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Abstract: The concept of higher order frequency response functions, used for investi-

gation of weekly nonlinear systems by frequency response techniques, is applied to

investigation of membrane systems. Isothermal permeation of single gases through

non-porous and porous membranes is analysed for three transport mechanisms:

solution-diffusion, pore-surface diffusion, and viscous-flow. In the course of definition

of the transmembrane transport in dynamic conditions, a new concept of generalized

membrane permeability, defined as an indefinite sequence of the permeabilities of

the first, second, third, . . . order, dependent on the equilibrium and transport parameters

of the membrane in steady-state, is introduced. A simple two-reservoir system, with

variation of the volume of one reservoir, is defined and its first and second order

frequency response functions are derived. It is shown that these functions can be

used for identification of the transport mechanism, i.e., of the corresponding model

and for estimation of the model parameters: permeabilities of different orders, as

well as the separate values of the relevant equilibrium and transport parameters.
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INTRODUCTION

Nonlinear frequency response (FR) is a response of a nonlinear system to a

sinusoidal or a cosinusoidal input perturbation. It has been proven to be a

very useful tool for practical investigation of weekly nonlinear systems (1).

A convenient approach used for treatment of frequency response of weakly

nonlinear systems is the concept of higher order frequency response

functions (FRFs), which is based on Volterra series and generalized Fourier

transform (1). For some time, this concept has been used for analysis of

weakly nonlinear electrical and mechanical systems, as well as in control

engineering (1). In our work, we have been using it for investigation of adsorp-

tion kinetics and equilibria (2–7). The most important results of this investi-

gation are that it is possible to reliably discriminate between different kinetic

mechanisms using higher order FRFs (5, 7), and that both kinetic and equili-

brium parameters, including the ones defining the system nonlinearity, can be

estimated from the same set of experimental data (3, 4). The investigation

presented in this paper is the first attempt to apply the nonlinear frequency

response method to investigation of membrane systems.

More details about nonlinear FR and the concept of higher order FRFs can

be found in our previous publications (2, 3). Below we give only some basics:

Contrary to the linear FR, which consists only of the basic (first)

harmonic, the nonlinear FR also contains a nonperiodic (DC) component

and an indefinite number of higher harmonics (Fig. 1, Equation (1)).

y ¼ ys þ yDC þ yI þ yII þ yIII þ � � �

¼ ys þ yDC þ BI cosðvt þ wIÞ

þ BII cosð2vt þ wIIÞ þ BIII cosð3vt þ wIIIÞ þ � � � ð1Þ

The concept of higher order FRFs assumes replacement of the nonlinear

model G with an indefinite sequence of linear functions (FRFs) of the first,

second, third, etc. order (G1, G2, G3, etc.) (1). This sequence is often called

the generalized transfer function (8). The output of a weakly nonlinear

system can be represented in a Volterra series form (1). For a single

harmonic input, the Volterra series becomes:

y ¼ ys þ
A

2
fG1ðvÞe

jvt þ G1ð�vÞe�jvtg

þ
A

2

� �2

fG2ðv;vÞe
2jvt þ G2ð�v;�vÞe�2jvt þ 2G2ðv;�vÞe0g

þ
A

2

� �3

fG3ðv;v;vÞe
3jvt þ G3ð�v;�v;�vÞe�3jvt

þ 3G3ðv;v;�vÞe jvt þ 3G3ð�v;�v;vÞe�jvtg þ � � � ð2Þ
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By collecting the constant terms in Equation (2), we obtain the DC

component:

yDC ¼ 2ðA=2Þ2G2ðv;�vÞ þ 6ðA=2Þ4G4ðv;v;�v;�vÞ þ � � � ð3Þ;

by collecting the periodic terms of frequency v, the first harmonic:

yI ¼ BI cosðvt þ wIÞ

¼ fðA=2ÞG1ðvÞ þ 3ðA=2Þ3G3ðv;v;�vÞ þ � � �ge jvt

þ fðA=2ÞG1ð�vÞ þ 3ðA=2Þ3G3ðv;�v;�vÞ þ � � �ge�jvt ð4Þ;

by collecting the periodic terms of frequency 2v, the second harmonic:

yII ¼ BII cosð2vt þ wIIÞ

¼ fðA=2Þ2G2ðv;vÞ þ 4ðA=2Þ4G4ðv;v;v;�vÞ þ � � �ge2jvt

þ fðA=2Þ2G2ð�v;�vÞ þ 4ðA=2Þ4G4ðv;�v;�v;�vÞ þ � � �ge�2jvt

ð5Þ;

by collecting the periodic terms of frequency 3v, the third harmonic:

yIII ¼ BIII cosð3vt þ wIIIÞ

¼ fðA=2Þ3G3ðv;v;vÞ þ 5ðA=2Þ5G5ðv;v;v;v;�vÞ þ � � �ge3jvt

þ fðA=2Þ3G3ð�v;�v;�vÞ

þ 5ðA=2Þ5G5ðv;v;�v;�v;�vÞ þ � � �ge�3jvt ð6Þ;

etc.

The first order function G1(v) corresponds to the dominant term of the

first harmonic, the second order function G2(v,v) to the dominant term of

the second harmonic, the second order function G2(v,-v) to the dominant

term of the DC component, the third order function G3(v,v,v) to the

dominant term of the third harmonic, etc. There are established procedures

for estimation of the FRFs from harmonic data (9).

This paper is an attempt to apply the concept of higher order FRFs to

investigation of membrane transport. For the time being we restrict our

analysis to investigation of isothermal permeation of pure gases through

membranes, for three different transport mechanisms: sorption-diffusion

through dense membranes, pore-surface diffusion through adsorbing porous

membranes, and viscous flow through nonadsorbing porous membranes.

Figure 1. Frequency response of a nonlinear system.
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DEFINITION OF TRANSPORT MECHANISMS IN

DYNAMIC CONDITIONS

Frequency response is defined as a response to periodic input change around a

predefined steady-state. For that reason, we will start our investigation with

analysis of the nonlinear dynamics for the simplest case of dynamic trans-

membrane transport, presented in Fig. 2: in steady state the whole system is

in equilibrium (the pressures at both sides of the membrane are equal to ps,

the concentration in the membrane is uniform and equal to the equilibrium

concentration Qs ¼ F(ps), and the flux through the membrane Js is zero). In

Fig. 2, Dp1, Dp2, DQ and DJ represent deviations of the pressures p1 and p2,

concentration in the membrane Q and flux through the membrane J, from

their steady-state values.

When a perturbation to this system is introduced (Dp1 = 0 and/or
Dp2 = 0) the flux and the concentration in the membrane become nonlinear

functions of time and the position x in the membrane. The nature of this non-

linearity depends on the transport mechanism. We will consider the mean

value of the flux within the membrane, as a representative of the net transport:

kJl ¼
1

L

ðL
0

JðxÞdx ð7Þ

We will derive expressions that correlate the mean flux to the perturbations

Dp1 and Dp2, for three different transport mechanisms: solution-diffusion,

pore-surface diffusion and viscous flow.

Solution-Diffusion Mechanism (10)

This mechanism of membrane transport is characteristic for defect-free dense

membranes. The gas molecules are sorbed (dissolved) in the membrane

Figure 2. Schematic representation of membrane transport in dynamic conditions.
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material and the sorbed molecules are transported through the membrane by

Fickian diffusion. For the case of zero steady-state flux under consideration

(Js ¼ 0), the flux at position x is:

JðxÞ ¼ DJðxÞ ¼ �Dm

dQ

dx
¼ �Dm

dDQ

dx
ð8Þ

where Dm is the diffusion coefficient through the membrane material. If

diffusion through the membrane is the only resistance to mass transfer, the

concentrations of the sorbed gas in the membrane at both membrane bound-

aries are in local equilibrium with the gas phases. This equilibrium relation

is generally nonlinear. For our analysis it is convenient to represent it in the

Taylor series form:

x ¼ 0 : Qð0Þ ¼ Fð p1Þ ¼ Qs þ aDp1 þ bDp21 þ cDp31 þ � � � ð9Þ

x ¼ L : QðLÞ ¼ Fð p2Þ ¼ Qs þ aDp2 þ bDp22 þ cDp32 þ � � � ð10Þ

where a, b, c, . . . are the coefficients of the Taylor series, which are pro-

portional to the first, second, third, . . . order derivatives of the equilibrium

relation (adsorption isotherm) F, corresponding to ps:

a ¼
dF

dp

����
s

; b ¼
1

2

d2F

dp2

����
s

; c ¼
1

6

d3F

dp3

����
s

; . . . ð11Þ

The diffusion coefficient Dm is generally concentration dependent, and this

dependence is generally nonlinear. It will also be represented in the Taylor

series form:

Dm ¼ Dm;s þ Dð1Þ
m DQþ Dð2Þ

m DQ2 þ Dð3Þ
m DQ3 þ � � � ð12Þ

where Dm,s is the steady-state value of the diffusion coefficient (corresponding

to Qs) and:

Dð1Þ
m ¼

dDm

dQ

����
s

; Dð2Þ
m ¼

1

2

d2Dm

dQ2

����
s

; Dð3Þ
m ¼

1

6

d3Dm

dQ3

����
s

; . . . ð13Þ

Taking into account Equation (12), Equation (8) can be rewritten in the

following form:

JðxÞ ¼ �ðDm;s þ Dð1Þ
m DQþ Dð2Þ

m DQ2 þ � � �Þ
dDQ

dx

¼ �Dm;s
dDQ

dx
�
Dð1Þ

m

2

dDQ2

dx
�
Dð2Þ

m

3

dDQ3

dx
þ � � � ð14Þ
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Using Equation (7), the mean flux in the membrane will be:

kJl ¼ �Dm;s
1

L

ðL
0

dDQðxÞ �
Dð1Þ

m

2

1

L

ðL
0

dDQ2ðxÞ

�
Dð2Þ

m

3

1

L

ðL
0

dDQ3ðxÞ � � � �

¼ �
Dm;s

L
ðDQðLÞ � DQð0ÞÞ

�
Dð1Þ

m

2L
ðDQ2ðLÞ � DQ2ð0ÞÞ �

Dð2Þ
m

3L
ðDQ3ðLÞ � DQ3ð0ÞÞ � � � � ð15Þ

By applying the boundary conditions (9) and (10), the final expression for the

mean flux in the membrane, corresponding to the solution-diffusion mechan-

isms, is obtained:

kJl ¼ Dm;sa
Dp1 � Dp2

L
þ Dm;sbþ

Dð1Þ
m a2

2

� �
Dp21 � Dp22

L

þ Dm;scþ Dð1Þ
m abþ

Dð3Þ
m a3

3

� �
Dp31 � Dp32

L
þ � � � ð16Þ

If the diffusion coefficient can be regarded as constant in the investigated

range of concentrations, this expression reduces to:

kJl ¼ Dma
Dp1 � Dp2

L
þ Dmb

Dp21 � Dp22
L

þ Dmc
Dp31 � Dp32

L
þ � � � ð17Þ

and for the case of constant diffusion coefficient and linear adsorption

isotherm, to the classical equation used for steady-state permeation through

dense membranes (10):

kJðxÞl ¼ Dma
Dp1 � Dp2

L
¼ Dm

dQ

dp

Dp1 � Dp2

L
ð18Þ

Pore-Surface Diffusion Mechanism (11)

This mechanism takes place when a sorbing gas permeates through a defect-

free porous membrane. The total concentration in such a membrane can be

obtained as a weighted sum of the concentrations in the gas phase present

in the pores and in the solid (adsorbed) phase:

QðxÞ ¼ 1CiðxÞ þ ð1� 1ÞQiðxÞ ¼
1

RgT
piðxÞ þ ð1� 1ÞQiðxÞ ð19Þ
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where 1 is the membrane porosity, Ci the concentrations in the membrane

pores, pi the corresponding pressure, Qi the concentration in the solid phase

and Rg and T are the universal gas constant and the absolute temperature.

Local equilibrium at any position within the pores is usually assumed, and

the equilibrium relation is generally nonlinear. Again, we will represent it

in the Taylor series form:

Qi ¼ Fð piÞ ¼ Qi;s þ DQi ¼ Qi;s þ aDpi þ bp2i þ cDp3i þ � � � ð20Þ

DQi and Dpi are the deviations of the corresponding variables from their

steady-state values, and a, b and c are defined in analogous way as in

Equation (11).

Generally, the membrane transport takes place by two parallel mechan-

isms: by molecular diffusion of the gas molecules in the membrane pores,

and by surface diffusion of the adsorbed molecules. For the case under con-

sideration of zero steady-state flux (Js ¼ 0), the flux through the membrane is:

JðxÞ ¼ �1Dp

@Ci

@x
� ð1� 1ÞDs

@Qi

@x

¼ �
1Dp

RgT

@Dpi
@x

� ð1� 1ÞDs

@DQi

@x
ð21Þ

Dp and Ds are the pore and surface diffusion coefficients, respectively.

Usually, concentration dependence of the surface diffusion coefficient Ds is

significant and has to be taken into account. Being generally nonlinear, this

concentration dependence will again be represented in a Taylor series form:

Ds ¼ Ds;s þ Dð1Þ
s DQi þ Dð2Þ

s DQ2
i þ Dð3Þ

s DQ3
i þ � � � ð22Þ

where Ds,s is the surface diffusion coefficient corresponding to the steady-state

concentration Qi,s and Ds
(1), Ds

(2), Ds
(3),. . . are defined in an analogous way as

Dm
(1), Dm

(2), Dm
(3),. . . in Equation (13).

The boundary conditions at both sides of the membrane are:

x ¼ 0 : pið0Þ ¼ p1¼)Dpið0Þ ¼ Dp1 ð23Þ

x ¼ L : piðLÞ ¼ p2¼)DpiðLÞ ¼ Dp2 ð24Þ

Taking into account Equations (20) and (22), Equation (21) can be written in

the following form:

JðxÞ ¼ �
1Dp

RgT

@Dpi
@x

� ð1� 1ÞfDs;s þ Dð1Þ
s ðaDpi þ bDp2i þ � � �Þ

þ Dð2Þ
s ðaDpi þ bDp2i þ � � �Þ

2
þ � � �g

� a
@Dpi
@x

þ b
@Dp2i
@x

þ c
@Dp3i
@x

þ � � �

� �
ð25Þ

Non Linear Frequency Response Applications 49

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
4
6
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



After rearranging Equation (25) and applying Equation (7), the mean flux in

the membrane is:

kJl ¼ �
1Dp

RgT
þ ð1� 1ÞDs;sa

� �
1

L

ðL
0

dDpiðxÞ

� ð1� 1Þ Ds;sbþ
Dð1Þ

s a2

2

� �
1

L

ðL
0

dðDpiðxÞÞ
2

� ð1� 1Þ Ds;scþ Dð1Þ
s abþ

Dð2Þ
s a3

2

� �
1

L

ðL
0

dðDpiðxÞÞ
3
� � � � ð26Þ

and by applying the boundary conditions (23) and (24) the final expression is

obtained:

kJl ¼ �Deff aeff
Dp1 � Dp2

L
� ð1� 1Þ Ds;sbþ

Dð1Þ
s a2

2

� �
Dp21 � Dp22

L

� ð1� 1Þ Ds;scþ Dð1Þ
s abþ

Dð2Þ
s a3

2

� �
Dp31 � Dp32

L
� � � � ð27Þ

In this expression we introduce the commonly used definitions of effective or

apparent diffusivity (12):

Deff ¼
1Dp þ ð1� 1ÞDs,saRgT

1þ ð1� 1ÞaRgT
ð28Þ

and slope of the adsorption isotherm

aeff ¼
1

RgT
þ ð1� 1Þa ¼

dQ

dp

����
s

ð29Þ

If the surface diffusion coefficient can be regarded as constant in the concen-

tration range of interest, Equation (27) reduces to:

kJl ¼ Deff aeff
Dp1 � Dp2

L
þ ð1� 1ÞDsb

Dp21 � Dp22
L

þ ð1� 1ÞDsc
Dp31 � Dp32

L
þ � � � ð30Þ

and for the case of constant diffusion coefficients and linear adsorption

isotherm, it reduces to the classical form valid for steady-state permeation
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through sorbing porous membranes:

kJl ¼ JðxÞ ¼ Deff aeff
Dp1 � Dp2

L

¼
1Dp

RgT
þ ð1� 1ÞDs

dQi

dpi

����
s

� �
Dp1 � Dp2

L
ð31Þ

Viscous-Flow Transport Mechanism (11)

This pressure driven transport mechanism takes place in porous non-sorbing

membranes with relatively large pores. The flux through the membrane for

this case can be defined as:

JðxÞ ¼ �1
B0

mRgT
pi
dpi

dx
¼ �1

B0

mRgT
ð ps þ DpiÞ

dDpi

dx
ð32Þ

where pi is the pressure in the membrane pores, 1 the membrane porosity, m

viscosity and B0 the so-called viscous flow parameter. The boundary

conditions at both sides of the membrane are:

x ¼ 0 : pið0Þ ¼ p1 ¼)Dpið0Þ ¼ Dp1 ð33Þ

x ¼ L : piðLÞ ¼ p2 ¼)DpiðLÞ ¼ Dp2 ð34Þ

and the mean flux in the membrane is:

, J . ¼ �
1B0ps

mRgT

1

L

ðL
0

dDpiðxÞ �
1B0

mRgT

1

2L

ðL
0

dðDpiðxÞÞ
2

¼
1B0ps

mRgT

Dp1 � Dp2

L
þ

1B0

2mRgT

Dp21 � Dp22
L

ð35Þ

Generalized Concept of Membrane Permeability

The derived expressions for the mean flux in the membrane in dynamic con-

ditions, for all three cases under consideration (Equations (16), (27) and (35))

can be represented in the same general form:

kJðxÞl ¼ PI

Dp1 � Dp2

L
þ PII

Dp21 � Dp22
L

þ PIII

Dp31 � Dp32
L

þ � � � ð36Þ

i.e. as an infinite series of terms of different orders: the first one proportional to

the difference of the pressure deviations (linear driving force term), the second
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one to the difference of the squares of the pressure deviations (quadratic

driving force term), the third one to the difference of the cubes of the

pressure deviations (cubic driving force term), etc., with constant coefficients

PI, PII, PIII, etc, which depend on the steady-state conditions. The first term in

Equation (36) corresponds to the conventional definition of steady-state trans-

membrane transport, where PI corresponds to permeability (10). Accordingly,

we will call PI permeability of the first order, and in analogy with that, PII, PIII,

etc, will be called the permeabilities of the second, third etc., order. In this

way, we define a generalized dynamic permeability, which is generally

represented by an infinite sequence of constant values PI, PII, PIII, etc,

dependent on the steady state around which the system is perturbed. The defi-

nitions of the first three members of these sequences for the three mechanisms

analysed in this work are summarized in Table 1. It should be noticed that for

the solution-diffusion and for the pore-surface diffusion mechanism the

generalized permeabilities are indefinite sequences, while for the viscous-

flow mechanism it reduces only to two terms (PI and PII), while all the per-

meabilities of the third and higher orders are 0.

A TWO-RESERVOIR SYSTEM FOR INVESTIGATION

OF NONLINEAR FREQUENCY RESPONSE OF MEMBRANE

SYSTEMS

Different designs could be used for investigation of membrane systems by

nonlinear FR. We propose a two-reservoir system, presented in Fig. 3,

which is similar to the two-resonator system analyzed by Sun and Do (13).

The system is composed of two batch reservoirs filled with the same pure

gas, and divided by the investigated membrane. At steady state, the pressures

in both reservoirs are equal (ps) and the concentration in the membrane is

uniform and in equilibrium with ps (Qs). The volume of the second

reservoir V2 is constant, while the volume of the first reservoir V1 can be

varied using a bellow, causing variations of the pressures p1 and p2, as well

as of the concentration in the membrane Q. During the FR experiments, V1

Table 1. Permeabilities of the first, second and third order, for three transport

mechanisms

Mechanism PI PII PIII

Solution-

diffusion

Dm,s a Dm;sbþ
Dð1Þ

m a2

2
Dm;scþ Dð1Þ

m abþ
Dð2Þ

m a3

3

Pore-surface

diffusion

Deff aeff ð1� 1Þ Ds;sbþ
Dð1Þ

s a2

2

� �
ð1� 1Þ

Ds;scþ Dð1Þ
s abþ Dð2Þ

s a3

3

� �

Viscous-

flow

1B0ps

mRgT

1B0

2mRgT

0
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is varied in a cosinusoidal way. When a periodic quasi-steady state is reached,

the pressures p1 and p2, the concentration in the membrane Q and the flux

through the membrane J, become complex periodic functions of the input

frequency, of the form shown in Fig. 1 and Equations (2–6).

Definition of the Generalized Transfer Functions (Sets of FRFs)

Each of the system outputs can be related to the periodic change of the volume

V1 via its generalized transfer function (set of FRFs). The pressures p1 and p2,

which can be measured continuously, can be used for estimation of the corre-

sponding sets of FRFs. We will denote the FRFs relating p1 to V1 as F1(v),

F2(v1,v2), F3(v1,v2,v3), . . . , and the FRFs relating p2 to V1 as G1(v),

G2(v1,v2), G3(v1,v2,v3), . . . , Both sets of FRFs contain information about

the permeation mechanism and the corresponding parameters. Nevertheless,

another set of FRFs would be of greater interest, as it defines the membrane

transport more directly: the set relating the change of p2 to the change of

p1. We will denote this set of FRFs as Z1(v), Z2(v1,v2), Z3(v1,v2,v3), . . . .
The F- and G-functions could be estimated from experimentally

measured quasi-stationary responses of p1 and p2 to a cosinusoidal change

of V1. On the other hand, the Z-functions, which correspond to the response

of p2 to a cosinusoidal change of p1, can be calculated from the G- and F-

functions. The G-functions actually correspond to a series connection of

two nonlinear elements defined by the F- and the Z-functions (the block

diagram illustrating the relations among the F-, G- and Z-functions is given

in Fig. 4). For example, for the first and second order FRFs, the series rules

can be written in the following way (1):

G1ðvÞ ¼ Z1ðvÞF1ðvÞ ð37Þ

G2ðv1;v2Þ ¼ Z1ðv1 þ v2ÞF2ðv1;v2Þ þ Z2ðv1;v2ÞF1ðv1ÞF1ðv2Þ ð38Þ

The Z-functions can be calculated from these equations. For the case of our

interest, when the input (V1) is a single harmonic function, the frequencies

Figure 3. A schematic representation of the proposed two-reservoir experimental

system.
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v1 and v2 can be either v or 2v. The Z-function for that case can be calcu-

lated using the following recurrent formulae:

Z1ðvÞ ¼
G1ðvÞ

F1ðvÞ
ð39Þ

Z2ðv;vÞ ¼
G2ðv;vÞ � Z1ð2vÞF2ðv;vÞ

F2
1ðvÞ

ð40Þ

Z2ðv;�vÞ ¼
G2ðv;�vÞ � Z1ð0ÞF2ðv;�vÞ

F1ðvÞF1ð�vÞ
ð41Þ

Similar formulae can be derived for the third and higher order Z-functions.

In the next section we will derive the Z-functions for the three mechan-

isms of membrane transport analysed in the second section of this manuscript:

solution-diffusion, pore-surface diffusion and viscous flow.

THE Z-FUNCTIONS

We will limit our efforts to derivation and analysis of only the first and second

order FRFs. The reason for that is that the complexity of the algebra involved,

as well as of the derived expressions, increases considerably with the increase

of the FRF order. On the other hand, the main idea about the applicability of

the higher order FRFs can be clearly seen even from the analysis of the first

two functions. Nevertheless, the procedure for derivation of higher order

functions is straightforward and can be continued using the same method-

ology, when needed for practical applications.

Mathematical Models

In order to derive the FRFs, it is necessary to postulate the nonlinear math-

ematical model of the system presented in Fig. 3. The following material

balances have to be defined:

– Material balance for the membrane:

@Q

@t
¼ �

@J

@x
ð42Þ

Figure 4. Block diagram defining the FRFs for the system shown in Figure 3.
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– Material balance for reservoir 1:

dðV1C1Þ

dt
¼ �SJjx¼0 ð43Þ

– Material balance for reservoir 2:

V2

dC2

dt
¼ SJjx¼L ð44Þ

In these equations, S is the membrane surface area, V1 the variable volume of

reservoir 1 and V2 the constant volume of reservoir 2. C1 and C2 are the con-

centrations in reservoirs 1 and 2, respectively (for isothermal systems, pro-

portional to the pressures p1 and p2). All other variables have been defined

previously.

The expression for the flux in Equations (42–44), as well as and the

boundary conditions for Equation (42), depend on the mechanism of

membrane transport. For the three mechanisms under consideration, they

can be found in the second section of this manuscript.

Oneway to derive the Z-functionswould be to derive theF- andG-functions

first, solving the model equations for a cosinusoidal change of V1, and than

use Equations (39–41). Nevertheless, there is another, shorter way to derive

the Z-functions, solving the model equations for cosinusoidal change of the

pressure p1. In that case, the model reduces only to the material balances for

the membrane and reservoir 2 (Equations (42) and (44)), with the appropriate

boundary conditions. These model equations, for the three mechanisms under

consideration, are listed in Table 2. All concentrations in these equations are

defined as nondimensional deviations from their steady-state values, as this

form is more convenient for analysis in the frequency domain. The definitions

of the nondimensional concentrations are listed in Table 3, together with the

definitions of some parameters in the model equations.

First and Second Order Z-Functions

The starting point in derivation of the Z-functions is the fact that they correlate

the change of the pressure (concentration) in the second reservoir (output) to

the change of the pressure (concentration) in the first reservoir (input). If the

input change is a single harmonic function:

c1ðtÞ ¼ A cosðvtÞ ¼
A

2
ðe jvt þ e�jvtÞ ð58Þ

according to Equations (3–6) the output function will be:

c2ðtÞ ¼
A

2
ðZ1ðvÞe

jvt þ Z1ð�vÞe�jvtÞ þ
A

2

� �2

ðZ2ðv;vÞe
2jvt

þ Z2ð�v;�vÞe�2jvt þ 2Z2ðv;�vÞe0Þ þ � � � ð59Þ
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Table 2. Model equations for derivation of the Z-functions, for three mechanisms of

transport through gas membranes

Solution-diffusion mechanism

Material balance for the membrane

@q

@t
¼

@

@x
ðDm;s þ ~D

ð1Þ

m qþ ~D
ð2Þ

m q2 þ � � �Þ
@q

@x

� �
ð45Þ

Boundary conditions

x ¼ 0 : q ¼ ~ac1 þ ~bc21 þ ~cc31 þ . . . ð46Þ

x ¼ L : q ¼ ~ac2 þ ~bc22 þ ~cc32 þ . . . ð47Þ

Material balance for reservoir 2

dc2

dt
¼ �K ðDm;s þ ~D

ð1Þ

m qþ ~D
ð2Þ

m q2 þ � � �Þ
@q

@x

� �����
x¼L

ð48Þ

Pore-surface diffusion mechanism

Material balance for the membrane

10
@ci
@t

þ ð1� 1Þ
@qi
@t

¼
@

@x
10Dp

@ci
@x

þ ð1� 1ÞðDs;s þ ~D
ð1Þ

s qi þ ~D
ð2Þ

s q2i þ � � �Þ
@qi
@x

� �
ð49Þ

Local equilibrium within the pores

8x : qi ¼ ~aci þ ~bc2i þ ~cc3i þ . . . ð50Þ

Boundary conditions

x ¼ 0 : ci ¼ c1 ð51Þ

x ¼ L : ci ¼ c2 ð52Þ

Material balance for reservoir 2

dc2

dt
¼ �K 10Dp

@ci
@x

þ ð1� 1ÞðDs;s þ ~D
ð1Þ

s qi þ ~D
ð2Þ

s q2i þ � � �Þ
@qi
@x

� �����
x¼ L

ð53Þ

Viscous flow

Material balance for the membrane

@ci
@t

¼
@

@x
b0ð1þ ciÞ

@ci
@x

� �
ð54Þ

Boundary conditions

x ¼ 0 : ci ¼ c1 ð55Þ

x ¼ L : ci ¼ c2 ð56Þ

Material balance for reservoir 2

dc2

dt
¼ �Kb0 ð1þ ciÞ

@ci
@x

� �����
x¼ L

ð57Þ
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Table 3. Definitions of the nondimensional concentrations and the modified

parameters appearing in the model equations listed in Table 2

Solution-diffusion mechanism

Nondimensional concentrations

c1 ¼
C1 � Cs

Cs

¼
p1 � ps

ps
; c2 ¼

C2 � Cs

Cs

¼
p2 � ps

ps
; q ¼

Q� Qs

Qs

Modified parameters

~a ¼
dQ

dp

����
s

ps

Qs

¼ a
ps

Qs

; ~b ¼
1

2

d2Q

dp2

����
s

p2s
Qs

¼ b
p2s
Qs

; ~c ¼
1

6

d3Q

dp3

����
s

p3s
Qs

¼ c
p3s
Qs

; � � �

~D
ð1Þ

m ¼
dDm

dQ

����
s

Qs ¼ Dð1Þ
m Qs; ~D

ð2Þ

m ¼
1

2

d2Dm

dQ2

����
s

Q2
s ¼ Dð2Þ

m Q2
s ; � � � K ¼

S

V2

Qs

Cs

Pore-surface diffusion mechanism

Nondimensional concentrations

c1 ¼
C1 � Cs

Cs

¼
p1 � ps

ps
; c2 ¼

C2 � Cs

Cs

¼
p2 � ps

ps
;

ci ¼
Ci � Cs

Cs

;
pi � ps

ps
; qi ¼

Qi � Qis

Qis

Modified parameters

~a ¼
dQi

dpi

����
s

ps

Qi;s
¼ a

ps

Qi;s
; ~b ¼

1

2

d2Qi

dp2i

����
s

p2s
Qi;s

¼ b
p2s
Qi;s

;

~c ¼
1

6

d3Qi

dp3i

����
s

p3s
Qi;s

¼ c
p3s
Qi;s

; � � �

10 ¼ 1
Cs

Qs

; ~aeff ¼ aeff
ps

Qs

¼ 10 þ ð1� 1Þ~a; Deff ¼
10Dp þ ð1� 1Þ~aDs;s

10 þ ð1� 1Þ~a

~D
ð1Þ

s ¼
dDs

dQi

����
s

Qi;s ¼ Dð1Þ
s Qi;s; ~D

ð2Þ

s ¼
1

2

d2Ds

dQ2
i

����
s

Q2
i;s ¼ Dð2Þ

s Q2
i;s; � � � K ¼

S

V2

Qi;s

Cs

Viscous flow mechanism

Nondimensional concentrations

c1 ¼
C1 � Cs

Cs

¼
p1 � ps

ps
; c2 ¼

C2 � Cs

Cs

¼
p2 � ps

ps
; ci ¼

Ci � Cs

Cs

¼
pi � ps

ps

Modified parameters

b0 ¼
B0ps

m
; K ¼

S1

V2
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The derivation procedure is similar to the one used for adsorption systems

(4–6). Here, we give only the final expressions for the derived first and second

order Z-functions, corresponding to the three mechanisms of membrane

transport under consideration.

First Order Function Z1(v)

For all three mechanisms, the first order Z-function can be represented in the

same form:

Z1ðvÞ ¼
c

ffiffiffiffi
v

p

jv sinhða
ffiffiffiffi
v

p
LÞ þ c

ffiffiffiffi
v

p
coshða

ffiffiffiffi
v

p
LÞ

ð60Þ

Nevertheless, the definitions of the parameters a and c are different for

different mechanisms:

– For solution-diffusion mechanism:

a ¼

ffiffiffiffiffiffiffiffiffi
j

Dm;s

s
;c ¼ K ~a

ffiffiffiffiffiffiffiffiffiffiffi
jDm;s

p
ð61aÞ

– For pore-surface diffusion mechanism:

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j

10 þ ð1� 1Þ~a

1Dp þ ð1� 1ÞDs;s ~a
¼

s ffiffiffiffiffiffiffiffi
j

Deff

s
;

c ¼ Kð10 þ ð1� 1Þ~aÞ
ffiffiffiffiffiffiffiffiffiffi
jDeff

p
¼ K ~aeff

ffiffiffiffiffiffiffiffiffiffi
jDeff

p
ð61bÞ

– For viscous-flow mechanism:

a ¼

ffiffiffiffiffi
j

b0

s
;c ¼ 1K

ffiffiffiffiffiffiffiffi
jb0

p
ð61cÞ

Second Order Function Z2(v,v)

The second order functions Z2(v,v) for the three mechanisms can again be put

into the same form:

Z2ðv;vÞ ¼ Z1ð2vÞ

� S1ðvÞ þ S2ðvÞ coshða
ffiffiffiffiffiffi
2v

p
LÞ þ S3ðvÞ sinhða

ffiffiffiffiffiffi
2v

p
LÞ

n o
ð62Þ
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The terms S1, S2 and S3 are complex functions of frequency, which differ

for different mechanism:

– For solution-diffusion mechanism:

S1ðvÞ ¼
~D
ð1Þ

m ~a

Dm;s

ðZ2
1 ðvÞ þ 1Þ=2� Z1ðvÞ coshða

ffiffiffiffi
v

p
LÞ

sinh2ða
ffiffiffiffi
v

p
LÞ

þ
~b

~a
þ

~D
ð1Þ

m ~a

Dm;s

 !
ð63a� 1Þ

S2ðvÞ ¼ �
~D
ð1Þ

m ~a

Dm;s

ðZ2
1 ðvÞ þ 1Þ=2� Z1ðvÞ coshða

ffiffiffiffi
v

p
LÞ

sinh2ða
ffiffiffiffi
v

p
LÞ

�
~b

~a
þ

~D
ð1Þ

m ~a

Dm;s

 !
Z2
1 ðvÞ ð63a� 2Þ

S3ðvÞ ¼

ffiffiffi
2

p
~D
ð1Þ

m ~a

2Dm;s

Z2
1 ðvÞ coshða

ffiffiffiffi
v

p
LÞ � Z1ðvÞ

sinhða
ffiffiffiffi
v

p
LÞ

ð63a� 3Þ

– For pore-surface diffusion mechanism:

S1ðvÞ ¼ 2ð1� 1Þ
Ds;s

~bþ ~D
ð1Þ

s ~a2=2

Deff ~aeff
�

~b

~a

 !

�
ðZ2

1 ðvÞ þ 1Þ=2� Z1ðvÞ coshða
ffiffiffiffi
v

p
LÞ

sinh2ða
ffiffiffiffi
v

p
LÞ

þ ð1� 1Þ 2
Ds;s

~bþ ~D
ð1Þ

s ~a2=2

Deff ~aeff
�

~b

~a

 !
ð63b� 1Þ

S2ðvÞ ¼ 2ð1� 1Þ
~b

~a
�
Ds;s

~bþ ~D
ð1Þ

s ~a2=2

Deff ~aeff

 !

�
ðZ2

1 ðvÞ þ 1Þ=2� Z1ðvÞ coshða
ffiffiffiffi
v

p
LÞ

sinh2ða
ffiffiffiffi
v

p
LÞ

þ ð1� 1Þ
~b

~a
� 2

Ds;s
~bþ ~D

ð1Þ

s ~a2=2

Deff ~aeff

 !
Z2
1 ðvÞ ð63b� 2Þ

S3ðvÞ ¼
ffiffiffi
2

p
ð1� 1Þ 2

Ds;s
~bþ ~D

ð1Þ

s ~a2=2

Deff ~aeff
�

~b

~a

 !

�
Z2
1 ðvÞ coshða

ffiffiffiffi
v

p
LÞ � Z1ðvÞ

sinhða
ffiffiffiffi
v

p
LÞ

ð63b� 3Þ

Non Linear Frequency Response Applications 59

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
4
6
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



– For viscous flow mechanism

S1ðvÞ ¼
ðZ2

1 ðvÞ þ 1Þ=2� Z1ðvÞ coshða
ffiffiffiffi
v

p
LÞ

sinh2ða
ffiffiffiffi
v

p
LÞ

þ 1 ð63c� 1Þ

S2ðvÞ ¼ �
ðZ2

1 ðvÞ þ 1Þ=2� Z1ðvÞ coshða
ffiffiffiffi
v

p
LÞ

sinh2ða
ffiffiffiffi
v

p
LÞ

� Z2
1 ðvÞ ð63c� 2Þ

S3ðvÞ ¼

ffiffiffi
2

p

2

Z2
1 ðvÞ coshða

ffiffiffiffi
v

p
LÞ � Z1ðvÞ

sinhða
ffiffiffiffi
v

p
LÞ

ð63c� 3Þ

Second Order Function Z2(v, 2v)

The common form of the expressions for the second order function Z2(v,2v)

is:

Z2ðv;�vÞ ¼ Lð1� Z1ðvÞZ1ð�vÞÞ ð64Þ

The parameter L also have different definitions for different mechanisms:

For solution-diffusion mechanism:

L ¼
Dm;s

~bþ ~D
ð1Þ

m ~a2=2

Dm;s ~a
ð65aÞ

For pore-surface diffusion mechanism:

L ¼
ð1� 1ÞðDs;s

~bþ ~D
ð1Þ

s ~a2=2Þ

Deff ~aeff
ð65bÞ

For viscous-flow mechanism:

L ¼
1

2
ð65cÞ

Simulation Results

The derived mathematical expressions for the first and second order Z-

functions corresponding to the three models under investigation are rather

complex for direct analysis. For that reason, these expressions were used for

computer simulation which can be used for analysis of the main features of

these functions and for comparison between different models.

The parameter values used for simulation are listed in Table 4.

Although they do not correspond to any specific systems, these values

have realistic orders of magnitude. Different values of the membrane

thickness were used for different models, as they correspond to different

membrane types. Also, different values of the parameter K were used for

M. Petkovska and L. T. Petkovska60

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
4
6
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



the solution-diffusion and for the pore-surface diffusion models on one hand,

and for the viscous flow model on the other, owing to different definitions of

this parameter.

The simulated Z-functions of the first and second order are given in

Figure 5 for the solution-diffusion model, Figure 6 for the pore-surface

diffusion model and Figure 7 for the viscous-flow model. All FRFs are

presented in the form of standard Bodé-plots (amplitude vs. frequency in

log-log, and phase vs. frequency in semi-log diagrams).

The following conclusions can be withdrawn by inspection of

Figures 5–7:

– First order functions Z1(v): The shapes of the first order functions are same

for all three mechanisms: the amplitudes of Z1(v) have horizontal low-

frequency asymptotes (the asymptotic values are equal to 1) and two

distinct changes of slope; the phases tend to 0 for v ! 0, have plateaus

at the level –p/2, and tend to –1 for v ! 1.

– Second order functions Z2(v,v): The amplitudes have similar behavior in

the low- and high-frequency range (tend to 0 both for v ! 0 and

v ! 1). Nevertheless, in the middle range of frequencies, the amplitudes

for the solution-diffusion and viscous-flow mechanisms are essentially

linear and parallel to the first order curves, while for the pore-surface

mechanism the amplitude has more complex shape with several inflection

points. The phase functions have similar shapes (and similar to those of

the first order functions, but the asymptotic values for the solution-

diffusion and pore-surface diffusion mechanism for v ! 0 are –p/2,
while for the viscous-flow mechanism it is þp/2.

– Second order functions Z2(v, 2v): The shapes of these functions are same

for all three mechanisms: the amplitudes tend to 0 for v ! 0 and to

constant values for v ! 1 and the phases are constant. The only difference

is that for the solution-diffusion and for the pore–surface diffusion model

Table 4. Values of the model parameters used for simulation

Solution-diffusion

model

Pore-surface diffusion

model

Viscous-flow

model

ã ¼ 0.8 ã ¼ 0.8 b0 ¼ 0.001s21

b̃ ¼ 20.2 b̃ ¼ 20.2 L ¼ 0.01 cm

Dm,s ¼ 1 � 1028 cm2/s Ds,s ¼ 1 � 1027 cm2/s K ¼ 10 cm21

D̃m
(1) ¼ 2 � 1029 cm2/s D̃s

(1) ¼ 2 � 1028 cm2/s 1 ¼ 0.5

L ¼ 1 � 1025 cm Dp ¼ 5 � 1024 cm2/s
K ¼ 100 cm21 L ¼ 2 � 1024 cm

K ¼ 100 cm21

1 ¼ 0.5

10 ¼ 0.0003
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the phase is –p (meaning that the DC component is negative), while for the

viscous-flow mechanism the phase is 0 (meaning that the DC component is

positive).

Based on the characteristics of the first and second order Z-functions, it

would be possible to distinguish between different permeation mechanisms

and to identify the real one: the pore-surface diffusion mechanism can be

identified based on the shape of the amplitude of Z2(v,v), and the viscous-

flow based on the phase of Z2(v,v) or Z2(v, 2v).

Figure 5. The first and second order Z-functions for the solution-diffusion model.
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ESTIMATION OF THE MODEL PARAMETERS FROM

THE FIRST AND SECOND ORDER FRFs

Parameters Estimated From the First Order FRF

One of the important and useful results of the investigation of frequency

response of adsorption systems is that the so-called out-of-phase function

(14), which is actually the negative imaginary part of the first order

frequency response function (15), has a maximum, the position of which is

Figure 6. The first and second order Z-functions for the pore-surface diffusion model.
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directly related to the main transport parameter of the system (14). This fact is

used for estimation of the transport parameters, such as diffusion coefficients,

using the frequency response method (14).

A similar result is obtained for the membrane systems investigated in this

paper. In Fig. 8, we show the imaginary parts of the first order function Z1(v)

for the three mechanisms of membrane transport under investigation. As can

be seen from this figure, the curves corresponding to the three different models

practically overlap. This was achieved by using nondimensional frequency on

the abscisa, defined as a ratio of the dimensional frequency and a characteristic

Figure 7. The first and second order Z-functions for the viscous-flow model.

M. Petkovska and L. T. Petkovska64

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
4
6
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



frequency v�. The definitions of the characteristic frequencies for the three

transport mechanism under consideration are:

– For the solution-diffusion mechanism

v� ¼
Dm;s ~aK

L
ð66Þ

– For the pore-surface mechanism

v� ¼
Deff ~aeff K

L
ð67Þ

– For the viscous-flow mechanism

v� ¼
b0K

L
ð68Þ

As it can be seen from Fig. 8, the minimum of the function Imag(Z1(v)) is

obtained for v/v� ¼ 1, i.e. for v ¼ v�.

On the other hand, by using the definitions of the first order permeabilities

given in Table 1, and the definitions of the nondimensional parameters given

Figure 8. Imaginary part of the first order Z-function
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in Table 3, it can be shown that for all three models under consideration the

first order permeability can be determined from the characteristic frequency,

i.e. from the locus of the minimum of the imaginary part of Z1(v), using the

following common expression:

PI ¼
V2L

SRgT
v� ð69Þ

It should be noticed that the characteristic frequency v� depends, not only

on the equilibrium and transport parameters of the investigated membrane, but

also on the geometry of the experimental system, i.e. on the ratio of the

membrane surface area S and the volume of the reservoir V2. In designing

the experimental system this ratio can be chosen in such a way that the charac-

teristic frequency is in the physically attainable range, even when investi-

gating systems with fast kinetics. By doing this, the main problem of

application of the frequency response method in investigation of chemical

systems, that input changes with frequencies higher than 10Hz can not be

produced (16), is resolved.

The first order permeability corresponding to the solution-diffusion or

to the pore-surface diffusion model is essentially a products of an equilibrium

(the first isotherm derivative) and a kinetic parameters (the diffusion coeffi-

cient). Using the first order Z-function, these parameters can be estimated

individually, as shown below.

Solution-Diffusion Model

It can be shown that the first derivative of the Z1-function has a finite low-

frequency asymptotic value, which is, according to the L0Hopital’s rule

same as the asymptotic value of the ratio of Imag(Z1(v)) and v:

lim
v! 0

dZ1ðvÞ

dv

����
���� ¼ lim

v! 0

ImðZ1ðvÞÞ

v

����
���� ¼ L

Dm;s ~aK
þ

L2

2Dm;s

¼
1

v�
þ

L2

2Dm;s
ð70Þ

Regarding the fact that the characteristic frequency is obtained from the locus

of the minimum of Imag(Z1(v)), the low-frequency asymptote defined by

Equation (70) enables estimation of the diffusion coefficient Dm,s correspond-

ing to the steady state pressure ps (concentration Qs). Knowing Dm,s, it

is possible to calculate the first derivative of the adsorption isotherm for

the same steady-state, a, as a ratio of the first order permeability PI and

Dm,s (a ¼ PI/Dm,s).
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Pore-Surface Diffusion Mechanism

The low-frequency asymptote of the first derivative of Z1(v) for this

mechanism has an analogous form as for the solution-diffusion case:

lim
v! 0

dZ1ðvÞ

dv

����
���� ¼ lim

v! 0

ImðZ1ðvÞÞ

v

����
���� ¼ L

Deff ~aeff K
þ

L2

2Deff

¼
1

v�
þ

L2

2Deff

ð71Þ

and can be used for estimation of the effective diffusivity coefficient Deff, and

further, of the effective slope of the adsorption isotherm aeff (aeff ¼ PI/Deff).

Parameters Estimated From the Second Order FRFs

In Section 2.4. we defined the so-called second order permeability. Using the

expressions given in Table 1 and the parameters defined in Table 3, it can be

shown that the following result is valid for all three mechanisms:

lim
v!1

Z2ðv;�vÞ ¼
PII

PI

ps ð72Þ

With the first order permeability PI estimated from the first order FRF Z1(v),

Equation (72) enables direct estimation of the second order permeability PII

corresponding to the steady-state pressure ps.

Again, for the solution-diffusion and pore-surface diffusion mechanisms,

some additional parameters can be estimated individually, from the second

order Z-functions.

Solution-Diffusion Mechanism

The low-frequency asymptotic value of the first derivative of the second order

function Z2(v,v) (which is, according to the L0Hopital’s rule the same as the

low-frequency asymptotic value of the ratio Z2(v,v)/v) is:

lim
v! 0

dZ2ðv;vÞ

dv

����
���� ¼ lim

v! 0

Z2ðv;vÞ

v

����
����

¼ 2
L

Dm;s ~aK

~bDm;s þ ~D
ð1Þ

m ~a2=2

Dm;s ~a
þ

L2

2Dm;s

~D
ð1Þ

m ~a2

Dm;s ~a

¼ 2
ps

v�

PII

PI

þ
L2ps

2D2
m;s

Dð1Þ
m a ð73Þ
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Equation (73) enables estimation of the first derivative of the diffusion coeffi-

cient Dm
(1), and with previously estimated values of v�, PI, PII, Dm,s and a, also

the second derivative of the adsorption isotherm b.

Pore-Surface Diffusion Mechanism

The low-frequency asymptote of the first derivative of Z2(v,v), is:

lim
v! 0

dZ2ðv;vÞ

dv

����
���� ¼ lim

v! 0

Z2ðv;vÞ

v

����
����

¼ ð1� 1Þ
~bDs;s þ ~D

ð1Þ

s ~a2=2

Deff ~aeff

L2

Deff

�
2L

Deff ~aeff K

� �
�

L2

Deff

~b

~aeff

�����
�����

¼ ps
PII

PI

L2

Deff

�
2

v�

� �
�

L2

Deff

ð1� 1Þb

aeff

����
���� ð74Þ

The second derivative of the adsorption isotherm b can be estimated using

Equation (74), assuming that PI, PII, v
�, Deff and aeff have been estimated

previously.

The third order permeability PIII and the equilibrium and transport

parameters related to it could be estimated from he third order function

Z3(v,v,v) and the higher order permeabilities from the functions of higher

order.

CONCLUSIONS

The aim of this paper was to analyse the possibilities of application of the

nonlinear frequency response method for investigation of membrane

transport. The analysis was limited to permeation of pure gases for three

transport mechanisms: solution-diffusion, pore-surface diffusion, and

viscous-flow.

The first result of our analysis was that, in dynamic conditions, the mean

flux through the membrane can be represented as an infinite series. The first

member of this series is proportional to the difference of the pressures at

both sides of the membrane, the second to the difference of the squares of

pressures, the third to the difference of cubes, etc. This led us to the definition

of the generalized permeability, as a sequence of values (which we called per-

meability of the first, second, third, etc., order). These values depend on the

steady state around which the system is perturbed, i.e. on the equilibrium

and transport parameters corresponding to that steady-state.

A simple two-reservoir system with modulation of the volume of one of

them was proposed for investigation of membrane transport by frequency

response. The generalized transfer function (a set of FRFs) relating the
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pressure changes in the two reservoirs (the Z-functions) was chosen as the

most convenient and informative. Starting from the nonlinear mathematical

models, the expressions for the first and second order Z-functions correspond-

ing to the three mechanisms under consideration were derived. Computer

simulation of the first and second order Z-functions, based on these

expressions, showed that the second order functions corresponding to

different mechanisms have different shapes, and that they contain enough

information for discrimination between different mechanisms.

On the other hand, the analysis of the derived Z-functions showed that

for each of the three mechanisms the first order permeability could be

estimated from the first order function Z1(v), more precisely from the

locus of the minimum of its imaginary part. Also, the second order

permeability for each mechanism could be estimated from the second

order functions, e.g. from the high frequency asymptote of the function

Z2(v, 2v).

It was also shown that the first and second order Z-functions can be used

for estimation of the equilibrium and kinetic parameters (such as the isotherm

derivatives and the diffusion coefficients), separately.

Although in this paper we derived and analysed only the first and second

order frequency response functions, the analysis could be extended to the third

and higher order functions, which could be used for estimation of the third and

higher order permeabilities.

Being the first attempt at applying the nonlinear FR technique to investi-

gation of membrane systems, this study was limited to the simplest case,

membrane transport of pure gases. Investigations of application of the

method to multicomponent gas systems and to liquid membrane systems

should follow this work. We expect the method to be applicable to investi-

gations of membrane transport of gas mixtures and for liquid separations.

Naturally, new, different definitions of the permeabilities and transfer

functions, as well as different designs of the experimental setups will be

needed for these cases.

NOTATION

A amplitude

a first derivative of the adsorption isotherm, mol/cm3/kPa
aeff effective first derivative of the adsorption isotherm, mol/

cm3/kPa
b second derivative of the adsorption isotherm, mol/cm3/

kPa2

B0 viscous-flow parameter

C concentration in the gas phase, mol/cm3

c nondimensional pressure or concentration in the gas

phase
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Ci concentration in the gas within the membrane pores,

mol/cm3

ci nondimensional pressure or concentration in the gas

within the membrane pores

Deff effective diffusion coefficient, cm2/s
Dm membrane diffusion coefficient (solution-diffusion

model), cm2/s
Dm
(1), Dm

(2), Dm
(3) Taylor series expansion coefficients for the membrane

diffusion coefficient

Dp pore diffusion coefficient, cm2/s
Ds surface diffusion coefficient, cm2/s
Ds
(1), Ds

(2), Ds
(3) Taylor series expansion coefficients for the surface

diffusion coefficient

F FRFs relating pressure (conc.) in reservoir 1 to the

change of volume of reservoir 1

G FRFs relating pressure (conc.) in reservoir 2 to the

change of volume of reservoir 1

J flux, mol/cm2/s
L membrane thickness, cm

K capacity parameter, defined in Table 3, m21

PI first order permeability, mol/cm/s/kPa
PII second order permeability, mol/cm/s/kPa2

PIII third order permeability, mol/cm/s/kPa3

p pressure, kPa

pi pressure in the membrane pores, kPa

Q concentration in the membrane, mol/cm3

Qi concentration in the solid phase, mol/cm3

qi nondimensional concentration in the solid phase

Rg gas constant, J/mol/K
T temperature, K

t time, s

S membrane surface area, cm2

V volume, cm3

x position within the membrane, cm

Z FRFs relating pressure (conc.) in reservoir 2 to pressure

(conc.) in reservoir 1

Greek Letters

b0 modified viscous-flow parameter, defined in Table 3

1 membrane porosity

1’ modified membrane porosity, defined in Table 3

m viscosity, Pas

v frequency, rad/s
v� characteristic frequency, rad/s

M. Petkovska and L. T. Petkovska70

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
4
6
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



Subscripts

1 reservoir 1

2 reservoir 2

s steady-state

Embellishments

� modified parameters, defined in Table 3

k l mean value
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