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Abstract: The concept of higher order frequency response functions, used for investi-
gation of weekly nonlinear systems by frequency response techniques, is applied to
investigation of membrane systems. Isothermal permeation of single gases through
non-porous and porous membranes is analysed for three transport mechanisms:
solution-diffusion, pore-surface diffusion, and viscous-flow. In the course of definition
of the transmembrane transport in dynamic conditions, a new concept of generalized
membrane permeability, defined as an indefinite sequence of the permeabilities of
the first, second, third, . . . order, dependent on the equilibrium and transport parameters
of the membrane in steady-state, is introduced. A simple two-reservoir system, with
variation of the volume of one reservoir, is defined and its first and second order
frequency response functions are derived. It is shown that these functions can be
used for identification of the transport mechanism, i.e., of the corresponding model
and for estimation of the model parameters: permeabilities of different orders, as
well as the separate values of the relevant equilibrium and transport parameters.
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INTRODUCTION

Nonlinear frequency response (FR) is a response of a nonlinear system to a
sinusoidal or a cosinusoidal input perturbation. It has been proven to be a
very useful tool for practical investigation of weekly nonlinear systems (1).
A convenient approach used for treatment of frequency response of weakly
nonlinear systems is the concept of higher order frequency response
functions (FRFs), which is based on Volterra series and generalized Fourier
transform (1). For some time, this concept has been used for analysis of
weakly nonlinear electrical and mechanical systems, as well as in control
engineering (1). In our work, we have been using it for investigation of adsorp-
tion kinetics and equilibria (2—7). The most important results of this investi-
gation are that it is possible to reliably discriminate between different kinetic
mechanisms using higher order FRFs (5, 7), and that both kinetic and equili-
brium parameters, including the ones defining the system nonlinearity, can be
estimated from the same set of experimental data (3, 4). The investigation
presented in this paper is the first attempt to apply the nonlinear frequency
response method to investigation of membrane systems.

More details about nonlinear FR and the concept of higher order FRFs can
be found in our previous publications (2, 3). Below we give only some basics:

Contrary to the linear FR, which consists only of the basic (first)
harmonic, the nonlinear FR also contains a nonperiodic (DC) component
and an indefinite number of higher harmonics (Fig. 1, Equation (1)).

Yy=Ys+Ypc+yYr+yun+ym—+---
= Y5 +¥Ypc + B cos(wt + ¢p)
+ By cos(2Qwt + ¢p) + By cos(3wt + @) + - - (D)

The concept of higher order FRFs assumes replacement of the nonlinear
model G with an indefinite sequence of linear functions (FRFs) of the first,
second, third, etc. order (G, G, G3, etc.) (1). This sequence is often called
the generalized transfer function (8). The output of a weakly nonlinear
system can be represented in a Volterra series form (1). For a single
harmonic input, the Volterra series becomes:

A . ,
y=ys+ ) {Gi(w)e!” + Gi(—w)e ™"}
A\? . ,
+ (2> {Ga(@, w)e?™ + Gy(—w, —w)e ¥ 4 2Gs(w, —w)e’)

A\’ A ‘
+ (E) {G3((U, , w)e3jwf 4 G3(—w, —w, _w)e—Sjmt

+3G3(w, 0, —w)e’ +3G3(—w, —w, w)e 7} 4 ... )
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x = Acos(of) NONLINEAR SYSTEM Y=VYoe ¥ Vit Yut Y+

G =06,(0).G,(®,0,),G,(@,,0,,0;),...

Figure 1. Frequency response of a nonlinear system.

By collecting the constant terms in Equation (2), we obtain the DC
component:

yoe = 2(A/2)’Ga(w, —w) + 6(A/2)*Gu(w, ©, —w, —w) + - -- 3.
by collecting the periodic terms of frequency w, the first harmonic:

y1 = By cos(wt + ¢;)
= {(A4/2)G1(0) + 3(A/2)’ G3(w, w, —) + - - -}/
+{(A/2)G1(—w) + 3(A/2)*G3(w, —w, —w) + - - Je ' ),

by collecting the periodic terms of frequency 2w, the second harmonic:

yn = B]] COS(2(1)[ —+ QD”)
= {(A/2)*Gr(w, w) + 4(A/2)*Cy(w, ©, 0, —w) + - - -}
+{(A/2)’Gr(—w, —) + 4(A/2)* Gy(w, —0, —0, —@) + - - -Je~F!

®.
by collecting the periodic terms of frequency 3w, the third harmonic:
yur = B cos(3wt + @)
= {(A/2)Gs(w. @, w) + 5(4/2) Gs(w, w, w, , —w) + - -}
+{(4/2)°Gy(~w, —0, —w)
+5(4/2)°Gs(@, 0, —w, —0, —w) + - -}V (©).

etc.

The first order function G{(w) corresponds to the dominant term of the
first harmonic, the second order function G,(w,w) to the dominant term of
the second harmonic, the second order function G,(w,-w) to the dominant
term of the DC component, the third order function G;(w,w,w) to the
dominant term of the third harmonic, etc. There are established procedures
for estimation of the FRFs from harmonic data (9).

This paper is an attempt to apply the concept of higher order FRFs to
investigation of membrane transport. For the time being we restrict our
analysis to investigation of isothermal permeation of pure gases through
membranes, for three different transport mechanisms: sorption-diffusion
through dense membranes, pore-surface diffusion through adsorbing porous
membranes, and viscous flow through nonadsorbing porous membranes.
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DEFINITION OF TRANSPORT MECHANISMS IN
DYNAMIC CONDITIONS

Frequency response is defined as a response to periodic input change around a
predefined steady-state. For that reason, we will start our investigation with
analysis of the nonlinear dynamics for the simplest case of dynamic trans-
membrane transport, presented in Fig. 2: in steady state the whole system is
in equilibrium (the pressures at both sides of the membrane are equal to py,
the concentration in the membrane is uniform and equal to the equilibrium
concentration Q; = ®(p,), and the flux through the membrane J; is zero). In
Fig. 2, Apy, Ap,, AQ and AJ represent deviations of the pressures p; and p,,
concentration in the membrane Q and flux through the membrane J, from
their steady-state values.

When a perturbation to this system is introduced (Ap; # 0 and/or
Ap, # 0) the flux and the concentration in the membrane become nonlinear
functions of time and the position x in the membrane. The nature of this non-
linearity depends on the transport mechanism. We will consider the mean
value of the flux within the membrane, as a representative of the net transport:

L

J) = % J J(x)dx (7

0

We will derive expressions that correlate the mean flux to the perturbations
Ap, and Ap,, for three different transport mechanisms: solution-diffusion,
pore-surface diffusion and viscous flow.

Solution-Diffusion Mechanism (10)

This mechanism of membrane transport is characteristic for defect-free dense
membranes. The gas molecules are sorbed (dissolved) in the membrane

MEMBRANE

Ap=p,-p, Ap=p,p,

AO()=0(x)-0,
AN)=J(x)

R

0 L ¥

Figure 2. Schematic representation of membrane transport in dynamic conditions.
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material and the sorbed molecules are transported through the membrane by
Fickian diffusion. For the case of zero steady-state flux under consideration
(J, = 0), the flux at position x is:

J0) = M) = —p, 2 = _p, 982 ®)
dx dx

where D,, is the diffusion coefficient through the membrane material. If
diffusion through the membrane is the only resistance to mass transfer, the
concentrations of the sorbed gas in the membrane at both membrane bound-
aries are in local equilibrium with the gas phases. This equilibrium relation
is generally nonlinear. For our analysis it is convenient to represent it in the
Taylor series form:

x=0:0(0) = D(p;) = O, +alp; + bAp} + cAp] + - - )
x=L:Q(L)=DP(p>) = Qs + alp, + bAp3 + cAp; + - -- (10)
where a, b, c, ... are the coefficients of the Taylor series, which are pro-
portional to the first, second, third, ... order derivatives of the equilibrium

relation (adsorption isotherm) ®, corresponding to p:

1D

dd
_ P
6 dp?

~dp

_1d’®

a =3 a7

(11)

k) ’
s N

The diffusion coefficient D,, is generally concentration dependent, and this
dependence is generally nonlinear. It will also be represented in the Taylor
series form:

D, =Dy +DPAQ + DPAQ* + DIAQ + - (12)

where D,, ; is the steady-state value of the diffusion coefficient (corresponding
to Q,) and:

p — | oy _1dDu| ) 1dDy

D _ , - 13
m =g | T T 240t T T 6 doR |, (13)

Taking into account Equation (12), Equation (8) can be rewritten in the
following form:

J(x) = —(Dys + DVAQ + DPAQ* +- - - .)dﬁ_Q
X
dAQ DV AAQ*> DP dAQ?

:_Dms_
7 odx 2 dx 3 dx

(14)
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Using Equation (7), the mean flux in the membrane will be:

L
) = =Dy | b - 22 JdAQ(x)
0
D(Z) T
2 [asor -
0

= _Dms 7 (BO(L) — AQ(0)

(1) DO
Do (AQZ(L) AQZ(O))—ﬁ(AQ%L) —AQ*(0) -+ (15)

By applying the boundary conditions (9) and (10), the final expression for the
mean flux in the membrane, corresponding to the solution-diffusion mechan-
isms, is obtained:

Api — Apy D)a*\ Apt — Ap3
= Dm sd———F—— Dm Sb o
U =Dnsa——7—=4 Db+ L

DYa*\ Ap} — Ap
3 L

+ (Dm,sc +DWab + 4. (16)

If the diffusion coefficient can be regarded as constant in the investigated
range of concentrations, this expression reduces to:

Apy — A AR — AR Apl— AP
(J)=D,a plL P2 L Db p‘L p2+Dmc7p‘L P2

+o o (17)

and for the case of constant diffusion coefficient and linear adsorption
isotherm, to the classical equation used for steady-state permeation through
dense membranes (10):

p1—Apy ) dQApi — Aps

<J(x)>=DmaT— mdp L

(18)
Pore-Surface Diffusion Mechanism (11)

This mechanism takes place when a sorbing gas permeates through a defect-
free porous membrane. The total concentration in such a membrane can be

obtained as a weighted sum of the concentrations in the gas phase present
in the pores and in the solid (adsorbed) phase:

O(x) = eCi(x) + (1 — £)Qi(x) = pl(X) + (1 —€)Qi(x) (19)
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where € is the membrane porosity, C; the concentrations in the membrane
pores, p; the corresponding pressure, Q; the concentration in the solid phase
and R, and T are the universal gas constant and the absolute temperature.
Local equilibrium at any position within the pores is usually assumed, and
the equilibrium relation is generally nonlinear. Again, we will represent it
in the Taylor series form:

0; = ®(p)) = Qiy +AQ; = Qi + alp; + bp? + cAp} + - - (20)

AQ; and Ap, are the deviations of the corresponding variables from their
steady-state values, and a, b and c¢ are defined in analogous way as in
Equation (11).

Generally, the membrane transport takes place by two parallel mechan-
isms: by molecular diffusion of the gas molecules in the membrane pores,
and by surface diffusion of the adsorbed molecules. For the case under con-
sideration of zero steady-state flux (J; = 0), the flux through the membrane is:

aC; 00;
= —&eD —(1—-¢)D
J(x) evp, E ( £)D; i
D, 0Ap; AQ;
— _S_PM_U —s)Dsa Y 21
R,T ox 0x

D, and D, are the pore and surface diffusion coefficients, respectively.
Usually, concentration dependence of the surface diffusion coefficient Dy is
significant and has to be taken into account. Being generally nonlinear, this
concentration dependence will again be represented in a Taylor series form:

Dy = Dys + DVAQ; + DPAQ} + DPAQ] + - -- (22)

where D ; is the surface diffusion coefficient corresponding to the steady-state
concentration Q;, and Dg.l), D§2), D§.3),. .. are defined in an analogous way as
DV D2 DD in Equation (13).

The boundary conditions at both sides of the membrane are:

x=0:pi(0) = p1=Api(0) = Ap, (23)
x=1L Zp,‘(L) = p2:>Api(L) - ApZ (24)

Taking into account Equations (20) and (22), Equation (21) can be written in

the following form:

_ =D, 1A
R,T 0ox

+DP(alp; + bAP? + - ) + -}

0Ap; AAp? AAp?
x 1a 2Py p P (0P (25)
ox ox ox

J(x) = — (1 — &){Ds + DV (aAp; + bAP? + - - )




09:46 25 January 2011

Downl oaded At:

50 M. Petkovska and L. T. Petkovska

After rearranging Equation (25) and applying Equation (7), the mean flux in
the membrane is:

L
0 =~(5op+0 - oDusa) £ [ asnco
0

R,T
D(l)a2 1 T 2
— (=00 +255) L [atapio)
0
DY\ 1
~(1-2) <Ds,sc +D{Vab + T") . J d(Bpi(x))’ = (26)
0

and by applying the boundary conditions (23) and (24) the final expression is
obtained:

Api — Ap DWa*\ Ap} — Ap3
= —Dyay L2 (1 —6)( Dy b+
o 1 eff 2 (1 — )| Dssb + 5 7
D(Z) 3 A 3 —A 3
—(1—8)<Dmc+D§')ab+ SZ“) plL P ... 7)

In this expression we introduce the commonly used definitions of effective or
apparent diffusivity (12):

_ &by + (1 —e)DyaR, T

. = 28
& e+ (1 —e)aR,T (28)
and slope of the adsorption isotherm
€ dQ
of ===+ (1 — =— 29
Aeff RgT+( &)a . (29)

If the surface diffusion coefficient can be regarded as constant in the concen-
tration range of interest, Equation (27) reduces to:

Ap} — Ap3

2
D1
+ (1 — &)Dsb
( ¢) L

Ap; — A
) :Dqﬁaqﬁ“%

Api — Ap3

+(1 —e)Dye—— 24... (30)

and for the case of constant diffusion coefficients and linear adsorption
isotherm, it reduces to the classical form valid for steady-state permeation



09:46 25 January 2011

Downl oaded At:

Non Linear Frequency Response Applications 51

through sorbing porous membranes:

Ap; — A
J)=J(x) = Deﬁ%ﬁ%
eD, dQ;| \ Ap1 — Ap2
=[—= 1—¢)D _— 1
(RgT+< D2 ) = (1)

Viscous-Flow Transport Mechanism (11)

This pressure driven transport mechanism takes place in porous non-sorbing
membranes with relatively large pores. The flux through the membrane for
this case can be defined as:

By dp; B dAp;
O p = e 20 (po+ Ap) T

J(x) = — L
(x) e MRng dx WR,T dx

(32)

where p; is the pressure in the membrane pores, € the membrane porosity,
viscosity and B, the so-called viscous flow parameter. The boundary
conditions at both sides of the membrane are:

x=0:p;i(0) = p; = Ap;(0) = Ap; (33)

x=L:pi(L)=p,= Api(L) = Ap, (34)

and the mean flux in the membrane is:

L L
SBOPXIJ eBy 1 J 2
<J>=- — | dAp;(x) — — | d(Ap;
WR,TL Pi(x) WR.T2L (Api(x))
0 0

_ &Bops Ap1 —Apy By Api— Ap3
wR,T L 2uR,T L

(35)

Generalized Concept of Membrane Permeability

The derived expressions for the mean flux in the membrane in dynamic con-
ditions, for all three cases under consideration (Equations (16), (27) and (35))
can be represented in the same general form:

Api — Ap, Api — Ap3

Ap} — Ap3
J =P P, P,
J(x) 1 7 + Py 7 + Py i3

+- (36)

i.e. as an infinite series of terms of different orders: the first one proportional to
the difference of the pressure deviations (linear driving force term), the second
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one to the difference of the squares of the pressure deviations (quadratic
driving force term), the third one to the difference of the cubes of the
pressure deviations (cubic driving force term), etc., with constant coefficients
Py, Py, Py, ete, which depend on the steady-state conditions. The first term in
Equation (36) corresponds to the conventional definition of steady-state trans-
membrane transport, where P; corresponds to permeability (10). Accordingly,
we will call P; permeability of the first order, and in analogy with that, Py, Py,
etc, will be called the permeabilities of the second, third etc., order. In this
way, we define a generalized dynamic permeability, which is generally
represented by an infinite sequence of constant values P;, P, Py, etc,
dependent on the steady state around which the system is perturbed. The defi-
nitions of the first three members of these sequences for the three mechanisms
analysed in this work are summarized in Table 1. It should be noticed that for
the solution-diffusion and for the pore-surface diffusion mechanism the
generalized permeabilities are indefinite sequences, while for the viscous-
flow mechanism it reduces only to two terms (P; and Pj;), while all the per-
meabilities of the third and higher orders are 0.

A TWO-RESERVOIR SYSTEM FOR INVESTIGATION
OF NONLINEAR FREQUENCY RESPONSE OF MEMBRANE
SYSTEMS

Different designs could be used for investigation of membrane systems by
nonlinear FR. We propose a two-reservoir system, presented in Fig. 3,
which is similar to the two-resonator system analyzed by Sun and Do (13).
The system is composed of two batch reservoirs filled with the same pure
gas, and divided by the investigated membrane. At steady state, the pressures
in both reservoirs are equal (p,) and the concentration in the membrane is
uniform and in equilibrium with p;(Q;). The volume of the second
reservoir V, is constant, while the volume of the first reservoir V; can be
varied using a bellow, causing variations of the pressures p; and p,, as well
as of the concentration in the membrane Q. During the FR experiments, V;

Table 1. Permeabilities of the first, second and third order, for three transport
mechanisms

Mechanism P, P, Py
D42 D43

Solution- D,,sa Db+ % D, ¢+ Dﬁi)ab + mTa

diffusion

DW 42 D DWab + DD g3

Pore-surface Doz az (1 — s)(D.\,Sb it M ) 1- s)( ns€ + D5 3a + D7 )

diffusion
Viscous- eByps eBy 0

flow p,RgT Z}LRgT
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P p:

=

V=V, (1+Acos(wt)) V. =const

MEMBRANE

Figure 3. A schematic representation of the proposed two-reservoir experimental
system.

is varied in a cosinusoidal way. When a periodic quasi-steady state is reached,
the pressures p; and p,, the concentration in the membrane Q and the flux
through the membrane J, become complex periodic functions of the input
frequency, of the form shown in Fig. 1 and Equations (2—-6).

Definition of the Generalized Transfer Functions (Sets of FRFs)

Each of the system outputs can be related to the periodic change of the volume
V via its generalized transfer function (set of FRFs). The pressures p; and p,
which can be measured continuously, can be used for estimation of the corre-
sponding sets of FRFs. We will denote the FRFs relating p, to V| as F(w),
Fy(wy,07), F3(wy,w5,w3),..., and the FRFs relating p, to V; as Gy(w),
Gr(w1,wr), G3(wq,w5,w3), ..., Both sets of FRFs contain information about
the permeation mechanism and the corresponding parameters. Nevertheless,
another set of FRFs would be of greater interest, as it defines the membrane
transport more directly: the set relating the change of p, to the change of
p1. We will denote this set of FRFs as Z;(w), Z,(w;,w,), Zz(w1,w2,w3), ... .

The F- and G-functions could be estimated from experimentally
measured quasi-stationary responses of p; and p, to a cosinusoidal change
of V. On the other hand, the Z-functions, which correspond to the response
of p, to a cosinusoidal change of p;, can be calculated from the G- and F-
functions. The G-functions actually correspond to a series connection of
two nonlinear elements defined by the F- and the Z-functions (the block
diagram illustrating the relations among the F-, G- and Z-functions is given
in Fig. 4). For example, for the first and second order FRFs, the series rules
can be written in the following way (1):

Gi(w) = Zi(w)F () (37)
Gy(wy, W) = Z (w1 + ) Fa(wy, @) + Zy(wr, wp)F1(w)Fi(w2)  (38)

The Z-functions can be calculated from these equations. For the case of our
interest, when the input (V) is a single harmonic function, the frequencies
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F(o), F(o0,0,).... —

Z(®), Z,(w,,m,),...

G (W), G, (o,,m,),...

Figure 4. Block diagram defining the FRFs for the system shown in Figure 3.

w; and w5 can be either w or — w. The Z-function for that case can be calcu-
lated using the following recurrent formulae:

40~ F (39)
Lo, @) = PO (40)

1
Zz(w’ _(D) — GZ((U, _w) - Zl (O)Fz((l), —a)) (41)

Fi(w)F\(-w)

Similar formulae can be derived for the third and higher order Z-functions.
In the next section we will derive the Z-functions for the three mechan-

isms of membrane transport analysed in the second section of this manuscript:

solution-diffusion, pore-surface diffusion and viscous flow.

THE Z-FUNCTIONS

We will limit our efforts to derivation and analysis of only the first and second
order FRFs. The reason for that is that the complexity of the algebra involved,
as well as of the derived expressions, increases considerably with the increase
of the FRF order. On the other hand, the main idea about the applicability of
the higher order FRFs can be clearly seen even from the analysis of the first
two functions. Nevertheless, the procedure for derivation of higher order
functions is straightforward and can be continued using the same method-
ology, when needed for practical applications.

Mathematical Models

In order to derive the FRFs, it is necessary to postulate the nonlinear math-
ematical model of the system presented in Fig. 3. The following material
balances have to be defined:

— Material balance for the membrane:
00 oJ
— = —— 42
ot ox “42)
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— Material balance for reservoir 1:

d(V] C])
_—~ 7 _ _ _ 4
” SJ1x=0 (43)

— Material balance for reservoir 2:

niT =i, (#4)
In these equations, S is the membrane surface area, V; the variable volume of
reservoir 1 and V, the constant volume of reservoir 2. C; and C, are the con-
centrations in reservoirs 1 and 2, respectively (for isothermal systems, pro-
portional to the pressures p; and p,). All other variables have been defined
previously.

The expression for the flux in Equations (42-44), as well as and the
boundary conditions for Equation (42), depend on the mechanism of
membrane transport. For the three mechanisms under consideration, they
can be found in the second section of this manuscript.

One way to derive the Z-functions would be to derive the F- and G-functions
first, solving the model equations for a cosinusoidal change of V;, and than
use Equations (39-41). Nevertheless, there is another, shorter way to derive
the Z-functions, solving the model equations for cosinusoidal change of the
pressure p;. In that case, the model reduces only to the material balances for
the membrane and reservoir 2 (Equations (42) and (44)), with the appropriate
boundary conditions. These model equations, for the three mechanisms under
consideration, are listed in Table 2. All concentrations in these equations are
defined as nondimensional deviations from their steady-state values, as this
form is more convenient for analysis in the frequency domain. The definitions
of the nondimensional concentrations are listed in Table 3, together with the
definitions of some parameters in the model equations.

First and Second Order Z-Functions

The starting point in derivation of the Z-functions is the fact that they correlate
the change of the pressure (concentration) in the second reservoir (output) to
the change of the pressure (concentration) in the first reservoir (input). If the
input change is a single harmonic function:

A, '
Cl(t) - A COS((L)[) = E(e/(‘” + e*jwt) (58)
according to Equations (3—6) the output function will be:

A jot —jot A ? 2jwt
) =5 (e + Zi- ) ) + (5) (2o 0

+ Zo(—w, —w)e ¥ + 27, (w0, —w)e®) + - - - (59)
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Table 2. Model equations for derivation of the Z-functions, for three mechanisms of
transport through gas membranes

Solution-diffusion mechanism
Material balance for the membrane

dq _ ((Dm\—kDm +DP P+ --)%> 45)
o ox ox

Boundary conditions
x:O:q:acl—i—Ec%—i—Ec?—i—... (46)
x=L:q=ac;+bc:+ec+... (47)

Material balance for reservoir 2

dc 2 a
E2 = KD+ DY g+ DG+ (48)
dt /|,
Pore-surface diffusion mechanism
Material balance for the membrane
Bc, 0q;
S-o2h
3 ac 1 2 a i
- (/D —+(1—e)(DH+D<)q,+D<)2+~--)i> (49)
ox ax
Local equilibrium within the pores
Vx:q,-:&c,-—l—l;ciz—i—ﬁc?—l—... (50)
Boundary conditions
x=0:¢c=c 51
x=L:ci=c (52)
Material balance for reservoir 2
dc ac; 1 2 aq;
&2 _ _k(ep, +(1—e)(DH—f—D()ql—i—D()qz—}—-u)i (53)
dt A
Viscous flow
Material balance for the membrane
3C,' 0 BC,'
T (.30(1 + i) g) (54)
Boundary conditions
x=0:¢ci=c¢ (55)
x=L:¢ci=¢ (56)
Material balance for reservoir 2
dc; ac;
—=-K 14c¢)— 57
Z-kp(a+ai) 67
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Table 3. Definitions of the nondimensional concentrations and the modified
parameters appearing in the model equations listed in Table 2

Solution-diffusion mechanism
Nondimensional concentrations

o _G -G _p —Ps 62:C2_Cs:172_px’ q:Q_Qs
Cs Ps Gy Ps Os
Modified parameters
Zz:—&— Ds 7 1d2Q ps_p73 - 143 ps_&
dp |, 0 " 2dp*|,0s Q) 6dpd 0’
o) =] 0=, B =100 02 = bt K %%j

Pore-surface diffusion mechanism
Nondimensional concentrations

__Cl_cs_pl_ps _CZ_Cs_pZ_ps
= = , €2 = s

Cs Ps G ps
C.:Ci_Cs Di — Ps q':Qi_Qis
l Cs ’ Ps o Qis
Modified parameters
~ dQl DPs _ Ps 7 1d2Ql _ p%
a= =a , =b s
dpi s Qi,.\' 2 dp, Ql‘.\ Qi,s
. 1d%0i| p} P
C=- 3 =c L
6 dp; s Qi,s
’ s~ Ps ’ ~ S/Dp + (l - S)aDs,s
=&—, = r— = 1 — N D =
g =c¢ 0. Qeff = Qoff 0. e+ —¢e)a, Dy e r(-ea
~1) dD; ) 2 _1d°Dy| , @2 S Qs
D, = l\:D i85 = c.=D sK:_ -
K th s Q s 2 dQ,2 SQt.s N QLA,S V2 Cs
Viscous flow mechanism
Nondimensional concentrations
c :Cl _Cs: P1 — Ps CZ:CZ_CA': P2 — Ps C_:Ci_cs: Pi — Ds
Cs ps Cs ps C; Ps
Modified parameters
BOps Se

= LK =
fo=" v
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The derivation procedure is similar to the one used for adsorption systems
(4-6). Here, we give only the final expressions for the derived first and second
order Z-functions, corresponding to the three mechanisms of membrane
transport under consideration.

First Order Function Z;(w)

For all three mechanisms, the first order Z-function can be represented in the
same form:

Py
Jjosinh(a/wL) 4 /o cosh(a/wL)

Nevertheless, the definitions of the parameters « and ¢ are different for
different mechanisms:

Z|(0) =

(60)

— For solution-diffusion mechanism:

a= |y =Ka/iDy, (61a)

— For pore-surface diffusion mechanism:

. g4+ —ea j
o = j - = ,
eD, 4+ (1 —e)D,a D,

¥ =K(& + (1 — £)a)\/jDey = Kaeyr\/jDegr (61b)

— For viscous-flow mechanism:

a= Bi, v = ek \/jB (61c)

Second Order Function Z,(w,w)

The second order functions Z,(w,w) for the three mechanisms can again be put
into the same form:

Zr(w, w) = Z12w)

x {21 (©) + 3() cosh(av/2wL) + 33(w) sinh(a@L)}
(62)
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The terms 3, 2, and 23 are complex functions of frequency, which differ

for different mechanism:
— For solution-diffusion mechanism:

D& (Z2(w) + 1)/2 — Zi(w) cosh(a/wL)
Dm,x SInhZ(a\/_L)

. B+D(l)
a Dy

S0 = D GZ3) + /2 — Z1(w) cosh(ary/w)

2i(w) =

Dm,A sinh?(a/wL)
7 (1)~
b D

_ <a+ Dms)zf(w)

V2DV 72 () cosh(an/aL) — Zy(w)
2Dy 5 sinh(a/wL)

Z3(w) =

— For pore-surface diffusion mechanism:

(1) ~2
Ds b+ D 2 b
S 1(0) = 2(1 — 8)(—+ / )
Deﬂatﬁ a

 (Z}(©) + 1)/2 — Zi(w) cosh(ar/aL)

sinh?(a\/wL)
Dyb+D, @2 b
+a _8)(2M_~>
Deﬁae/f a

(1~ 2
Ez(w)—Z(l—s)(b Dyb+ D, /2)
Deﬁaeﬁ

(Zz(w) +1)/2 — Zi(w) cosh(a/wL)

sinh?(a/wl)

7 7~ 2

DY qb+D
+( —8)(5— ——

a/2\ _,
Dﬂaeﬂ >Zl (w)
~(1)~2
Ss(w) = \/5(1 _ 8)( M b)
foaeff a

Z2(w)cosh(afL) Z1(w)
sinh(a./wL)

(63a—1)
(63a—2)
(63a—3)
(63b— 1)
(63b —2)
(63b — 3)
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— For viscous flow mechanism

(Z3(w) + 1)/2 — Zi(w) cosh(a/wL)

Si(w) = s (/L) +1 (63c — 1)
L (Z}(w) + 1)/2 — Zi(w) cosh(a/wL) o B

So(w) = sinhX (/L) Zi(w)  (63c—2)
. V2 Z3(w) cosh(ay/wL) — Z;(w)

23(0) = sinh(a/wL) (63c=3)

Second Order Function Z,(w, — )
The common form of the expressions for the second order function Z,(w, — w)
is:

(0, —w) = A1 = Zi(0)Z(—w)) (64)

The parameter A also have different definitions for different mechanisms:
For solution-diffusion mechanism:

= (D).
Db +D)@

A 65
Dm,sa ( a)
For pore-surface diffusion mechanism:
7 A2
1 —¢&)(Ds b+ D 2
A (1=oDub+ D@2 (655)
D jyagy
For viscous-flow mechanism:
1
A=— (65¢)

2

Simulation Results

The derived mathematical expressions for the first and second order Z-
functions corresponding to the three models under investigation are rather
complex for direct analysis. For that reason, these expressions were used for
computer simulation which can be used for analysis of the main features of
these functions and for comparison between different models.

The parameter values used for simulation are listed in Table 4.
Although they do not correspond to any specific systems, these values
have realistic orders of magnitude. Different values of the membrane
thickness were used for different models, as they correspond to different
membrane types. Also, different values of the parameter K were used for
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Table 4. Values of the model parameters used for simulation

Solution-diffusion Pore-surface diffusion Viscous-flow
model model model
a=08 a=038 Bo = 0.001s~"
b=-02 bh=-02 L=0.0lcm
D,s=1x 10_8cm2/s D,=1x10"" cmz/s K=10cm™ !
DY =2 % 10"%cm?/s DV =12 x 10 8cm?/s £=0.5
L=1x10"%cm D,=5x 10"*cm?/s
K=100cm™ ! L=2x10"%cm

K=100cm™!

=05

¢ = 0.0003

the solution-diffusion and for the pore-surface diffusion models on one hand,
and for the viscous flow model on the other, owing to different definitions of
this parameter.

The simulated Z-functions of the first and second order are given in
Figure 5 for the solution-diffusion model, Figure 6 for the pore-surface
diffusion model and Figure 7 for the viscous-flow model. All FRFs are
presented in the form of standard Bodé-plots (amplitude vs. frequency in
log-log, and phase vs. frequency in semi-log diagrams).

The following conclusions can be withdrawn by inspection of
Figures 5-7:

— First order functions Z(w): The shapes of the first order functions are same
for all three mechanisms: the amplitudes of Z;(w) have horizontal low-
frequency asymptotes (the asymptotic values are equal to 1) and two
distinct changes of slope; the phases tend to 0 for w — 0, have plateaus
at the level —r/2, and tend to —oo for @ — oo,

— Second order functions Z,(w,w): The amplitudes have similar behavior in
the low- and high-frequency range (tend to O both for w — 0 and
@ — 00). Nevertheless, in the middle range of frequencies, the amplitudes
for the solution-diffusion and viscous-flow mechanisms are essentially
linear and parallel to the first order curves, while for the pore-surface
mechanism the amplitude has more complex shape with several inflection
points. The phase functions have similar shapes (and similar to those of
the first order functions, but the asymptotic values for the solution-
diffusion and pore-surface diffusion mechanism for w — 0 are —m/2,
while for the viscous-flow mechanism it is +77/2.

— Second order functions Z,(w, — w): The shapes of these functions are same
for all three mechanisms: the amplitudes tend to 0 for w — 0 and to
constant values for @ — o0 and the phases are constant. The only difference
is that for the solution-diffusion and for the pore—surface diffusion model
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Figure 5. The first and second order Z-functions for the solution-diffusion model.

the phase is — 7 (meaning that the DC component is negative), while for the
viscous-flow mechanism the phase is 0 (meaning that the DC component is
positive).

Based on the characteristics of the first and second order Z-functions, it
would be possible to distinguish between different permeation mechanisms
and to identify the real one: the pore-surface diffusion mechanism can be
identified based on the shape of the amplitude of Z,(w,w), and the viscous-
flow based on the phase of Z,(w,w) or Zy(w, — w).
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Figure 6. The first and second order Z-functions for the pore-surface diffusion model.

ESTIMATION OF THE MODEL PARAMETERS FROM
THE FIRST AND SECOND ORDER FRFs

Parameters Estimated From the First Order FRF

One of the important and useful results of the investigation of frequency
response of adsorption systems is that the so-called out-of-phase function
(14), which is actually the negative imaginary part of the first order
frequency response function (15), has a maximum, the position of which is
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Figure 7. The first and second order Z-functions for the viscous-flow model.

directly related to the main transport parameter of the system (14). This fact is
used for estimation of the transport parameters, such as diffusion coefficients,
using the frequency response method (14).

A similar result is obtained for the membrane systems investigated in this
paper. In Fig. 8, we show the imaginary parts of the first order function Z,(w)
for the three mechanisms of membrane transport under investigation. As can
be seen from this figure, the curves corresponding to the three different models
practically overlap. This was achieved by using nondimensional frequency on
the abscisa, defined as a ratio of the dimensional frequency and a characteristic
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Figure 8. Imaginary part of the first order Z-function

frequency w*. The definitions of the characteristic frequencies for the three
transport mechanism under consideration are:

— For the solution-diffusion mechanism

D,, ,aK
s 66
W == (66)

— For the pore-surface mechanism

D.gra.zK
a)*: é’ﬁczeﬂ (67)

— For the viscous-flow mechanism

(1)* — BOK

2 (68)

As it can be seen from Fig. 8, the minimum of the function Imag(Z,(w)) is
obtained for w/w* = 1, i.e. for w = o*.

On the other hand, by using the definitions of the first order permeabilities
given in Table 1, and the definitions of the nondimensional parameters given
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in Table 3, it can be shown that for all three models under consideration the
first order permeability can be determined from the characteristic frequency,
i.e. from the locus of the minimum of the imaginary part of Z;(w), using the
following common expression:

VoL
P, = * 69
! SR, T @ (©9)

It should be noticed that the characteristic frequency w* depends, not only
on the equilibrium and transport parameters of the investigated membrane, but
also on the geometry of the experimental system, i.e. on the ratio of the
membrane surface area S and the volume of the reservoir V5. In designing
the experimental system this ratio can be chosen in such a way that the charac-
teristic frequency is in the physically attainable range, even when investi-
gating systems with fast kinetics. By doing this, the main problem of
application of the frequency response method in investigation of chemical
systems, that input changes with frequencies higher than 10 Hz can not be
produced (16), is resolved.

The first order permeability corresponding to the solution-diffusion or
to the pore-surface diffusion model is essentially a products of an equilibrium
(the first isotherm derivative) and a kinetic parameters (the diffusion coeffi-
cient). Using the first order Z-function, these parameters can be estimated
individually, as shown below.

Solution-Diffusion Model
It can be shown that the first derivative of the Z;-function has a finite low-

frequency asymptotic value, which is, according to the L’Hopital’s rule
same as the asymptotic value of the ratio of Imag(Z;(w)) and w:

CldZi(w) Im(Z,(w)) L I?
lim = lim = =
0—0| dw w—0 (0] Dm,xaK 2Dm,s
1 I?
=— 70
w* + 2D, (70)

Regarding the fact that the characteristic frequency is obtained from the locus
of the minimum of Imag(Z,(w)), the low-frequency asymptote defined by
Equation (70) enables estimation of the diffusion coefficient D,, ; correspond-
ing to the steady state pressure p, (concentration Q;). Knowing D,,,, it
is possible to calculate the first derivative of the adsorption isotherm for
the same steady-state, a, as a ratio of the first order permeability P; and
Dm,s (Cl = Pl/Dm,s)-
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Pore-Surface Diffusion Mechanism

The low-frequency asymptote of the first derivative of Z;(w) for this
mechanism has an analogous form as for the solution-diffusion case:

dz Im(Z L L2
tim |21 _ iy |ME@)) L
0—0| dw w—0 w Deﬁ'aeﬁ'K ZDe/f
1 I?
_ 71
w*+2Deﬁc ( )

and can be used for estimation of the effective diffusivity coefficient D, and
further, of the effective slope of the adsorption isotherm a.z (a5 = P,/Dgﬁr).

Parameters Estimated From the Second Order FRFs

In Section 2.4. we defined the so-called second order permeability. Using the
expressions given in Table 1 and the parameters defined in Table 3, it can be
shown that the following result is valid for all three mechanisms:

lim Z(w, —w) = —py (72)

With the first order permeability P; estimated from the first order FRF Z;(w),
Equation (72) enables direct estimation of the second order permeability Py
corresponding to the steady-state pressure p;.

Again, for the solution-diffusion and pore-surface diffusion mechanisms,
some additional parameters can be estimated individually, from the second
order Z-functions.

Solution-Diffusion Mechanism

The low-frequency asymptotic value of the first derivative of the second order
function Z,(w,w) (which is, according to the L'Hopital’s rule the same as the
low-frequency asymptotic value of the ratio Z(w,w)/w) is:

7 Z
lim |2 @) "’)’ — lim 2@ @) ‘”)‘
w—0 dw w—0 w
_, L bDy, +Da?2 L2 D&
- "D, aK D,,.sa 2D, D,y s

Ps PII szs (1)
=Pl ZPp
o P 2D m¢

m,s

(73)
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Equation (73) enables estimation of the first derivative of the diffusion coeffi-

cient Dﬁ,}), and with previously estimated values of w*, Py, Py, D,, s and a, also
the second derivative of the adsorption isotherm b.

Pore-Surface Diffusion Mechanism

The low-frequency asymptote of the first derivative of Z(w,w), is:

. |dZy(w, w) . |2, w)’
lim |———| = lim |——=
w—0 dw w—0 w
(e bD,, + D& /2 ( 12 oL ) 2 b
- — &)= — N ~ 1, - T~ ~
Dgffaeff Deﬁf DeﬁcaeﬁK Deﬁ" Cleﬁr
Py (L* 2 L (1—¢)b
e e et (74)
P Dy @ Dy agy

The second derivative of the adsorption isotherm b can be estimated using
Equation (74), assuming that P;, Py, o*, D, and a.z have been estimated
previously.

The third order permeability P;; and the equilibrium and transport
parameters related to it could be estimated from he third order function
Z3(w,w,w) and the higher order permeabilities from the functions of higher
order.

CONCLUSIONS

The aim of this paper was to analyse the possibilities of application of the
nonlinear frequency response method for investigation of membrane
transport. The analysis was limited to permeation of pure gases for three
transport mechanisms: solution-diffusion, pore-surface diffusion, and
viscous-flow.

The first result of our analysis was that, in dynamic conditions, the mean
flux through the membrane can be represented as an infinite series. The first
member of this series is proportional to the difference of the pressures at
both sides of the membrane, the second to the difference of the squares of
pressures, the third to the difference of cubes, etc. This led us to the definition
of the generalized permeability, as a sequence of values (which we called per-
meability of the first, second, third, etc., order). These values depend on the
steady state around which the system is perturbed, i.e. on the equilibrium
and transport parameters corresponding to that steady-state.

A simple two-reservoir system with modulation of the volume of one of
them was proposed for investigation of membrane transport by frequency
response. The generalized transfer function (a set of FRFs) relating the
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pressure changes in the two reservoirs (the Z-functions) was chosen as the
most convenient and informative. Starting from the nonlinear mathematical
models, the expressions for the first and second order Z-functions correspond-
ing to the three mechanisms under consideration were derived. Computer
simulation of the first and second order Z-functions, based on these
expressions, showed that the second order functions corresponding to
different mechanisms have different shapes, and that they contain enough
information for discrimination between different mechanisms.

On the other hand, the analysis of the derived Z-functions showed that
for each of the three mechanisms the first order permeability could be
estimated from the first order function Z;(w), more precisely from the
locus of the minimum of its imaginary part. Also, the second order
permeability for each mechanism could be estimated from the second
order functions, e.g. from the high frequency asymptote of the function
Zr(w, —w).

It was also shown that the first and second order Z-functions can be used
for estimation of the equilibrium and kinetic parameters (such as the isotherm
derivatives and the diffusion coefficients), separately.

Although in this paper we derived and analysed only the first and second
order frequency response functions, the analysis could be extended to the third
and higher order functions, which could be used for estimation of the third and
higher order permeabilities.

Being the first attempt at applying the nonlinear FR technique to investi-
gation of membrane systems, this study was limited to the simplest case,
membrane transport of pure gases. Investigations of application of the
method to multicomponent gas systems and to liquid membrane systems
should follow this work. We expect the method to be applicable to investi-
gations of membrane transport of gas mixtures and for liquid separations.
Naturally, new, different definitions of the permeabilities and transfer
functions, as well as different designs of the experimental setups will be
needed for these cases.

NOTATION

A amplitude

a first derivative of the adsorption isotherm, mol/cm’/kPa

Aoy effective first derivative of the adsorption isotherm, mol/
cm®/kPa

b second derivative of the adsorption isotherm, mol/cm?/
kPa’

By viscous-flow parameter

C concentration in the gas phase, mol/ cm’

c nondimensional pressure or concentration in the gas

phase
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concentration in the gas within the membrane pores,
mol /cm?

nondimensional pressure or concentration in the gas
within the membrane pores

effective diffusion coefficient, cm?/s

membrane diffusion coefficient (solution-diffusion
model), cm?/s

Taylor series expansion coefficients for the membrane
diffusion coefficient

pore diffusion coefficient, cm? /s

surface diffusion coefficient, cm?/s

Taylor series expansion coefficients for the surface
diffusion coefficient

FRFs relating pressure (conc.) in reservoir 1 to the
change of volume of reservoir 1

FRFs relating pressure (conc.) in reservoir 2 to the
change of volume of reservoir 1

flux, mol /cm?/s

membrane thickness, cm

capacity parameter, defined in Table 3, m~

first order permeability, mol/cm/s/kPa

second order permeability, mol /cm/s/kPa*

third order permeability, mol /cm /s /kPa’

pressure, kPa

pressure in the membrane pores, kPa

concentration in the membrane, mol/ cm’

concentration in the solid phase, mol/cm’

nondimensional concentration in the solid phase

gas constant, J/mol /K

temperature, K

time, s

membrane surface area, cm”

volume, cm?

position within the membrane, cm

FRFs relating pressure (conc.) in reservoir 2 to pressure
(conc.) in reservoir 1

1

modified viscous-flow parameter, defined in Table 3
membrane porosity

modified membrane porosity, defined in Table 3
viscosity, Pas

frequency, rad/s

characteristic frequency, rad/s
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Subscripts

1 reservoir 1

2 reservoir 2

s steady-state

Embellishments

~ modified parameters, defined in Table 3
() mean value
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